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Why again logic synthesis? 

§  Strong intellectual value associated with logic 
synthesis and optimization 
§  Problems are far from being solved 

§  Current methods and tools grew out of control and 
random logic design for CMOS semicustom libraries 
§  Still inefficient for computational engines with predominance 

of arithmetic units 

§  Emerging nanotechnologies  
§  New devices are game changers   

(c) Giovanni De Micheli  
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The emerging nano-technologies 

§  Enhanced silicon CMOS is likely to remain the main 
manufacturing process in the medium term 
§  The 10nm and 7nm technology nodes are on the way 

§  What are the candidate technologies for the 5nm 
node and beyond? 
§  Silicon Nanowires (SiNW) 
§  Tunneling FETs (TFET) 
§  Carbon Nanotubes (CNT) 
§  2D devices  (flatronics) 

§  What are the common denominators from a design 
standpoint? 

(c) Giovanni De Micheli  
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22 nm Tri-Gate transistors 

(c) Giovanni De Micheli  
[Courtesy: M. Bohr] 
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FinFET 
Three-sided gate 

NanoWire FET 
Gate All Around 

From FinFET to Nanowire FET 



7  
 

Electrostatic doping 
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§  Electrically program the transistor to either p-type or n-type 

§  Field-effect control of the Schottky barrier 
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Silicon Nanowire Transistors 

§  Gate all around transistors 
§  Double gate to control polarity 

(c) Giovanni De Micheli  [Courtesy: De Marchi, EPFL] 
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Device Id/Vcg 
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[Courtesy: De Marchi, IEDM 12 EPFL] 
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Logic level abstraction 

§  Three terminal transistors are switches 
§  A loaded transistor is an inverter 

§  Controllable-polarity transistors compare two values 
§  A loaded transistor is an exclusive or (EXOR) 

§  The intrinsic higher computational expressiveness 
leads to more efficient data-path design 

§  The larger number of terminals must be 
compensated by smart wiring 
 

(c) Giovanni De Micheli  
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Logic cell design 

§  CMOS technology is efficient only for negative-unate functions 

§  INV, NAND, NOR, AOI 

§  Controllable-polarity logic is efficient for all functions 

§  Best for XOR-dominated circuits (binate functions)
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[Courtesy: H. Ben Jamaa, ’08](c) Giovanni De Micheli  
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Modular physical cell design 

NAND2	   XOR2	  

Two	  transistor	  pairs	  
grouped	  together	  
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(c) Giovanni De Micheli  [Courtesy: Bobba, DAC 12] 
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Modeling various emerging nanogates 

(c) Giovanni De Micheli  
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Biconditional Binary Decision Diagrams 

§  Native canonical data structure for logic design 

§  Biconditional expansion: 
f (v,w,.., z) = (v⊕w) f (w ',w,.., z)+ (v⊕w) f (w,w,.., z)

§  Each BBDD node: 

§  Has two branching variables 

§  Implements the biconditional expansion 

§  Reduces to Shannon’s expansion for 
single-input functions 
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[Courtesy: Amaru’, JETCAS 14] 
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BBDD: Examples 
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§  The BDD counterparts for these examples have about 50% more nodes!  
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Efficient direct mapping of BBDD nodes 

f(w,w,..,z)f(w’,w,..,z)

f(v,w,..,z)

0 1
v

f(v,w,..,z)

f(w’,w,..,z) f(w,w,..,z)

w
=

BBDD
MUX-XNOR

     =

v   w

f(w’,w,..,z) f(w,w,..,z)

f(v,w,..,z)
v   w

v   w

v   w

v   w

Transistor-level 
Implementation

[Courtesy: Amaru’, DATE 13] 
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Compact BBDD representations 
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§  n-bit adder size: 

§  3n+1 nodes 

§  BDD counterpart: 

§  5n+2 nodes 

3-bit adder 
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Compact BBDD representations 
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§  n-bit majority size: 

§  0.25 (n2 + 7) nodes 

§  BDD counterpart: 

§  ⌈0.5n⌉(n−⌈0.5n⌉+1)+1 nodes 

7-bit majority 
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The BBDD optimization tool 

§  Recursive formulation of Boolean operations 
§  Unique table to store BBDD nodes 
§  Performance-oriented memory management  
§  Chain variable reordering  
 

(c) Giovanni De Micheli  

BBDD 
Package BBDD 

http://lsi.epfl.ch/BBDD 
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Experimental results 

(c) Giovanni De Micheli 

§  We implemented a BBDD package in C language  
§  Comparison with CUDD (BDD) 

§  Both CUDD and BBDD first build the diagrams  
and then apply sifting 
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Also 1.63x speedup 
for arithmetic 
intensive circuits 
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Case study: arithmetic restructuring 

§  Use BBDD to restructure arithmetic circuits prior to synthesis 

§  Front-end to a commercial synthesis tool 

§  Real-life telecommunication design: Iterative Product Code Decoder  
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Nanotechnology design 

§  Iterative Product Code Decoder 

§  Analysis after Physical Design:  
§  22 nm FINFET 
§  22-nm DG-SiNWFET 

[Courtesy: Amaru’, IEEE Proceedings 15] 
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Logic synthesis for design and assessment 

(c) Giovanni De Micheli  

Emerging technologies 

Comparison to CMOS New tools 

Technology evaluation 
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§  Emerging nano-technologies with enhanced-functionality 
devices increase computational density 

§  New design, synthesis and verification methods stem 
from new abstractions of logic devices 

§  Current logic synthesis is based on specific heuristics: 
new models with stronger properties lead us to better 
methods and tools for both CMOS and emerging devices 

Conclusions 
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Thank you 

(c) Giovanni De Micheli  

Never stop exploring !!! 


